Teaching resources

coloured block

Ancient Mysteries in Marvellous Mud

Researchers at the University of Oxford studying ancient Australian mudstone have found evidence that is helping entirely reshape our picture of evolution and how the Earth developed. In these resources students will undertake a range of practical activities to investigate properties of mud and how pH affects living things (KS3), look at geological timescales (KS4), and learn about how X Rays can be used to identify signs of life on other planets (KS4) and spotting the first signs of life here on Earth (KS5).

KS3 - Evolution Detectives
KS4 - A Geological Blink
KS4 - Fingerprinting Mars Mud
KS5 - Fingerprinting First Life
In this lesson, students will be making and studying the properties of their own mud using pH experiments. They will be thinking about how pH affects microbes, and the ways that mudstones form, erode and break down. They will look at water, earth and air as they explore the science of evolution and wonder about how to identify traces of early life on Mars.
In this lesson, students will be coming to grips with the geological timescale of the Earth, of life on Earth, and of human history. They will be exploring the colourful history that explains how scientists can detect the colours of creatures long dead, and identify hints of early microbial life interacting with the atmosphere and lithosphere.
In this lesson, students will be exploring x-ray diffraction, the analytical technique used by scientists to explore the underlying structures of muds and comparing them to their own observations. Their detective skills will come in useful when samples gathered by rovers on Mars are compared to samples from Earth’s history. Astrobiologists hope to detect traces of minerals that could be “fingerprints” of early life. This lesson is better suited to higher ability classes.
In this lesson, students will be exploring x-ray diffraction, the analytical technique used by scientists to explore the underlying atomic structures of minerals, isotopic dating, and using microscopes to image microstructure.

Add new comment

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.